Stochastic modeling of Lake Van water level time series with jumps and multiple trends
نویسنده
چکیده
In the 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey, has risen up about 2 m. Analysis of the hydrometeorological data shows that change in the water level is related to the water budget of the lake. In this study, stochastic models are proposed for simulating monthly water level data. Two models considering monoand multiple-trend time series are developed. The models are derived after removal of trend and periodicity in the dataset. Trend observed in the lake water level time series is fitted by monoand multiple-trend lines. In the so-called mono-trend model, the time series is treated as a whole under the hypothesis that the lake water level has an increasing trend. In the second model (so-called multipletrend), the time series is divided into a number of segments to each a linear trend can be fitted separately. Application on the lake water level data shows that four segments, each fitted with a trend line, are meaningful. Both the monoand multiple-trend models are used for simulation of synthetic lake water level time series under the hypothesis that the observed monoand multiple-trend structure of the lake water level persist during the simulation period. The multiple-trend model is found better for planning the future infrastructural projects in surrounding areas of the lake as it generates higher maxima for the simulated lake water level.
منابع مشابه
Stochastic Monthly Rainfall Time Series Analysis, Modeling and Forecasting ( A cas study: Ardebilcity
Rainfall is the main source of the available water for human. Predicting the amount of the future rainfall is useful for informed policies, planning and decision making that will help potentially make optimal and sustainable use of available water resources. The main aim of this study was to investigate the trend and forecast monthly rainfall of selected synoptic station in Ardabil province usi...
متن کاملStatistical Analysis and Modeling (Forecasting) of the Temperature Time Series of Ahvaz Metropolis
Forecasting of temperature and precipitation can be efficiently used in decision making and optimal use of water resources. Studies in Iran have indicated a significant increase in annual temperature. This issue should be further researched in the Ahvaz region because it is the population hub in the southwest of Iran and the pole of irrigation networks and traditional agricultural land ...
متن کاملModeling Lake Urmia Water-Level Changes using Local Linear Neuro-Fuzzy Method
According to the water resources and climate change and challenges of Urmia Lake basin, which is the discharge and final destination of North West Rivers, a model was presented. Due to climate change and water resources in river basin such as rainfall, climate change in basin that has direct impact on evaporation over water catchment areas and lake water, this model can be provided. In addition...
متن کاملInvestigation of the performance and accuracy of multivariate timeseries models in predicting EC and TDS values of the rivers of Urmia Lake Basin
Considering the complexity of hydrological processes, it seems that multivariate methods may enhance the accuracy of time series models and the results obtained from them by taking more influential factors into account. Indeed, the results of multivariate models can improve the results of description, modeling, and prediction of different parameters by involving other influential factors. In th...
متن کاملDetermination of Climate Changes on Streamflow Process in the West of Lake Urmia With Used to Trend and Stationarity Analysis
One of the most important hydrological time series task is to determine if there is any trend in the data and how to achieve stationarity when there is nonstationarity behavior in data. Detecting trend and stationarity in hydrological time series may help us to understand the possible links between hydrological processes and global climate changes. In this study yearly, monthly and daily stream...
متن کامل